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Summary. In this article, we demonstrate a statistical method for fitting the parameters of a sophisticated network and
epidemic model to disease data. The pattern of contacts between hosts is described by a class of dyadic independence
exponential-family random graph models (ERGMs), whereas the transmission process that runs over the network is modeled
as a stochastic susceptible-exposed-infectious-removed (SEIR) epidemic. We fit these models to very detailed data from
the 1861 measles outbreak in Hagelloch, Germany. The network models include parameters for all recorded host covariates
including age, sex, household, and classroom membership and household location whereas the SEIR epidemic model has
exponentially distributed transmission times with gamma-distributed latent and infective periods. This approach allows us
to make meaningful statements about the structure of the population—separate from the transmission process—as well as to
provide estimates of various biological quantities of interest, such as the effective reproductive number, R. Using reversible
jump Markov chain Monte Carlo, we produce samples from the joint posterior distribution of all the parameters of this
model—the network, transmission tree, network parameters, and SEIR parameters—and perform Bayesian model selection
to find the best-fitting network model. We compare our results with those of previous analyses and show that the ERGM
network model better fits the data than a Bernoulli network model previously used. We also provide a software package,
written in R, that performs this type of analysis.
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1. Introduction
Networks are now commonly used to model interactions be-
tween hosts that enable the spread of disease through a pop-
ulation. Estimating the parameters of these network models
from data, however, remains a serious challenge. The focus of
this article is on fitting a plausible network model to real data
to demonstrate that rigorous statistical methods can feasibly
be used with this class of models. The data we fit here—from
a measles outbreak in Germany in 1861—were very well docu-
mented (Pfeilsticker, 1863) and, thus, provide an ideal testing
ground for new methods.

There have been several previous analyses of this data set,
with differing goals and utilizing various methods. Our anal-
ysis differs from most previous works in that we assume that
the epidemic spreads across the edges of a contact network.
Contacts, here, are assumed to be substantial enough to have
a reasonable chance of transmitting the pathogen. We use the
data to infer the properties of this contact network. These
properties—the factors that influence the propensity of in-
dividuals to make infectious contacts with one another—are
very important in the study of epidemiology, as the network
structure is known to have a significant impact on both the

spread of an epidemic (Anderson and May, 1991, Chapter 11–
12, Wallinga, Edmunds, and Kretzschmar, 1999, Read and
Keeling, 2003; Keeling and Eames, 2005; Meyers et al., 2005),
as well as on the methods of containing the spread of these epi-
demics (Ball, Mollison, and Scalia-Tomba, 1997; Becker and
Utev, 1998; Keeling et al., 2002; Hall and Becker, 2009). As
argued in Welch, Bansal, and Hunter (2011), there is a lack
of rigorous statistical work that fits network models to data;
this article seeks to address that lack.

We extend the methodology set out in Britton and O’Neill
(2002), Ray and Marzouk (2008), and Groendyke, Welch, and
Hunter (2011), to deal with host covariate information. This
means that known discrete or continuous properties of hosts,
such as age, household, other group memberships, and spa-
tial distribution can be incorporated into an analysis and the
relative importance to the spread of the disease of each of
these properties quantified. Further, we show that a Bayesian
model selection algorithm can be used to find the subset of
covariates that best explains the contact structure within the
population. Thus, for the first time, an explicit network model
of plausible complexity can be estimated from disease data al-
lowing us to more fully understand the mechanisms at play in
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the spread of epidemics through populations, and potentially
offer better means of testing alternate strategies for contain-
ing these epidemics.

In the remainder of this section, we introduce the Hagelloch
measles data set and summarize previous analyses of these
data. Section 2 describes the models and methods used in our
analysis. Section 3 presents results including parameter esti-
mates, model selection, estimates of the effective reproduction
number, and an assessment of the model fit. Section 4 con-
cludes with a discussion.

1.1 Hagelloch Measles Data and Previous Work
In 1861, a severe measles outbreak spread through the town
of Hagelloch, Germany, ultimately infecting 188 children.
Pfeilsticker (1863) recorded many pertinent details of this
epidemic including, for each infected individual in the pop-
ulation, their household, school class, household, age, gender,
dates of symptom onset, and various other items. Oesterle
(1992) later augmented these data by mapping the spatial
coordinates of each affected household and also inferred, for
each infected individual, the person who was the putative
source of infection. One hundred and eighty-eight children,
aged fifteen and younger, were susceptible to measles dur-
ing the time of this epidemic and each of these individuals
was indeed infected over the course of this outbreak. Part of
this data set is displayed in Web Figure 1. See Section 2 and
Lawson and Leimich (2000) or Neal and Roberts (2004) for
more detailed descriptions of this data set and population.

Lawson and Leimich (2000) analyze these data using a pro-
portional hazards model. They are interested in the spatial
and temporal effects of transmission (and their interaction),
and thus, consider a spatio–temporal model. The authors use
their model to estimate a parameter that measures the “spa-
tial scale of spread” and find a weak spatio–temporal interac-
tion in the data.

Neal and Roberts (2004) analyze the Hagelloch measles
data by using a stochastic epidemic model that describes the
transmission rate between two individuals (one infectious and
one susceptible) as a function of the individuals’ covariates. In
particular, they consider the effect of belonging to the same
household, attending the same school class, and the physi-
cal distance between the houses of the individuals. They seek
to discover which factors are the most important in describ-
ing the transmission rate and use a reversible jump Markov
chain Monte Carlo (MCMC) algorithm to choose among var-
ious models. Ultimately, they find that their full model (i.e.,
the model incorporating all of the effects mentioned earlier)
best fits the data, and that there is very strong evidence that
the classroom for younger children (6–10 years old) played a
strong role in enabling the spread of the epidemic.

Britton, Kypraios, and O’Neill (2011) analyze these data by
introducing a three-level mixing model (a generalization of the
two-level mixing model of Ball et al., 1997) and an susceptible-
exposed-infectious-removed (SEIR) epidemic model. Their
model assumes a three-level structure, with each (suscepti-
ble) individual belonging to a household, a group (school
class in this case), and to the community as a whole. In their
model, an individual may transmit the disease to any indi-
vidual within their household, group, or community; the cor-
responding frequencies of infectious contact for each type of
transmission are modeled by independent Poisson processes

with varying rates. The authors produce estimates for the
transmission rates in their model, and also derive estimates
of a threshold parameter (defined in Ball et al., 1997) for
this epidemic. They compare the log-likelihood of their model
to those of two different two-level mixing models (one which
eliminates household-level mixing and another that eliminates
group-level mixing) and conclude that the three-level mixing
model offers a substantially better fit to the data and that
both the group and household effects were important in the
spread of this disease.

Groendyke et al. (2011) analyze these data by using a
stochastic SEIR epidemic model to model the progression of
the disease and an Erdős-Rényi random graph model (Erdős
and Rényi, 1959; Gilbert, 1959) to describe the contact net-
work in the population. Although the authors were success-
ful in estimating the parameters for their models, the Erdős-
Rényi model is likely an overly simple representation of the
true interaction structure because it does not allow for the
incorporation of the various factors that Neal and Roberts
(2004) and Britton et al. (2011) found to be material in the
transmission of this disease.

2. Methods and Models
2.1 Model, Notation, and Assumptions
We use an undirected random graph model to describe the
contact network in the population of susceptible individuals.
The nodes of the graph, which are labeled 1, . . . , N, corre-
spond to the individuals, whereas the edges indicate the pres-
ence of a relationship sufficient to spread measles from one
person to another. Note that not all forms of contact between
individuals in the population will meet this criterion. We refer
to a pair of nodes, i and j, i ̸= j, as a dyad.

The specific type of random graph model we consider for
this analysis is one in which the probability of an edge between
individuals i and j is given by pij , where

log
(

pij

1 − pij

)
=
∑

s

ηsX{i ,j },s , (1)

X is a matrix of dyadic covariates, and η⃗ = {ηs} is the corre-
sponding vector of parameters. We assume that the existence
or not of edges within distinct dyads are mutually indepen-
dent so that equation (1) fully specifies the probability distri-
bution of the network. We denote a specific network by G, an(

N
2

)
length vector of indicators of edges for the

(
N
2

)
dyads in

the network.
Most of the dyadic statistics we use for this analysis are

binary in nature, taking a value of either 0 or 1, depending
on whether the individuals in the dyad share a characteristic
or not. We refer to these “matching” effects as homophily ef-
fects; they are also sometimes called “assortativity” effects, as
in Cauchemez et al. (2011). These include effects for house-
hold, classroom, and gender homophily. Because preliminary
analysis showed that the effects of being in the same classroom
were likely to be different for Classroom 1 than for Classroom
2, we compute a separate statistic for each classroom. Simi-
larly, we allow the gender homophily effect to vary according
to whether the dyad consists of two males or two females.
Two other dyadic statistics we consider are continuous in na-
ture: absolute age difference between individuals (measured in
units of 4 years), and the spatial distance (measured in units
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of 100 m) between the individuals’ households. Finally, we also
include a statistic whose value is 1 for every dyad, to measure
the overall propensity of edge formation. This statistic is the
analogue of the intercept term in a regression analysis. If we
take X to consist of only the covariate whose value is 1 for ev-
ery dyad, the resulting model is the Erdős-Rényi model. Inter-
action terms could easily be included in this model framework
by introducing covariates for each subgroup. For example, for
a classroom/gender interaction, we would include binary co-
variates for male/Classroom 1, female/Classroom 1, and so
on. Due to the sparsity of the data here, we do not consider
interactions.

These models belong to a class of random graph models
known as exponential-family random graph models (ERGMs)
or p∗ models (Wasserman and Pattison, 1996), which have
seen much use in the field of social network analysis. The
particular type of model given in equation (1) is a dyadic
independence model, in that the probability that any dyad
will contain an edge is solely a function of the characteristics
of the two individuals comprising the dyad, and is unaffected
by any other dyads.

Although G contains all of the potential edges that the dis-
ease might travel across, in actuality, the disease only tra-
verses a subset of these edges. This subset of edges forms a
directed transmission tree, which we denote by P. The root
of this tree is the initially infected individual, whose identity
is generally unknown, though we will assume that we know it
for the Hagelloch measles data.

To model each person’s progression through the course of
the disease, we use a stochastic SEIR epidemic model that we
describe briefly below (see Keeling and Rohani, 2008, for a
thorough description of this model). We assume that the pop-
ulation initially consists of one infectious individual, whereas
the remainder of the population is susceptible. Susceptible in-
dividuals may only become exposed via contact with people
in the infectious class with whom they share an edge in G.
The time taken to transmit the disease along a given edge
is assumed to follow an exponential distribution with mean
1/β. We assume that exposed individuals remain in this cat-
egory for a length of time described by a gamma random
variable with mean kEθE and variance kE θ2

E , after which time
they move to the infectious class. They remain infectious for
a length of time described by a gamma random variable with
mean kI θI and variance kI θ2

I , after which time they are re-
moved and play no further part in the epidemic.

The primary data for our model consist of the times at
which each individual entered the exposed, infectious, and re-
moved states. For an individual j, these times are denoted Ej ,
Ij , and Rj , respectively; the sets of all such times are denoted
E, I, and R, whereas the collective set of all times is denoted
by T = (E, I,R). The Hagelloch measles data contain infor-
mation that we can use to assign values to I and R, but we
will have to infer E as part of our inferential procedure. Be-
cause all I and R times are assumed known in this data set,
statistical inference for the kI and θI parameters is trivial and
does not affect other parts of the analysis; however, this would
no longer be true if not all of these times were observed, in
which case the missing values would be treated as extra pa-
rameters. The times in the data are rounded to the nearest
day but we treat them as exact; this assumption should intro-

duce no systematic bias to our parameter estimates. Following
Lawson and Leimich (2000) (also see Atkinson et al., 2011),
we assume that each individual became infectious one day be-
fore the onset of the prodrome (the early, mildly symptomatic
part of the disease) and that each individual entered the re-
moved state 3 days after onset of rash (or at death, if sooner).
We also remove one outlying data point from the data set as
this individual’s symptoms appeared nearly one month after
the rest of the epidemic had subsided so its infection was prob-
ably contracted elsewhere; see Groendyke et al. (2011) for an
analysis of the effects of this outlier.

2.2 Inferential and Computational Methods
Following Britton and O’Neill (2002), we treat G and P as ex-
tra parameters and estimate them along with the other model
parameters to simplify the computational burden of updating
the parameters in our MCMC algorithm. As in Groendyke
et al. (2011), the likelihood function, expressed in a form that
exploits the simplicity of the model when we condition on G
and P, is

L(β, kE , θE , kI , θI , p|T)

=
∑

G

∑

P

f (T|β, kE , θE , kI , θI , η,G,P)f (P|G)f (G|η).

By the independence assumption explained earlier, the term
f (G|η) is simply a product of terms p

Ii j
ij (1 − pij )1−Ii j for all

node pairs i < j, where pij is given by equation (1) and Iij
is the indicator of a contact in G between nodes i and j. The
term f (P|G) is simply a uniform distribution that makes all P
that are possible given a particular contact network G equally
likely. Finally, because T depends on η only through G, we
may write the first term above as f (T|β, kE , θE , kI , θI ,G,P).
As explained in Neal and Roberts (2005) and Groendyke
et al. (2011), this term factors into four separate pieces, which
give the contributions due to (a) contacts over which the epi-
demic was transmitted (i.e., edges in P), (b) contacts over
which epidemic was not transmitted (G \ P), (c) transitions
from exposed to infectious, and (d) transitions from infec-
tious to removed. If m represents the total number of in-
dividuals who eventually become infected, we thus obtain
f (T|β, kE , θE , kI , θI ,G,P) as the following product:

βm −1e−β A 1 × e−β A 2 ×

(
m∏

i=1

[Ii − Ei ]

)kE −1

θ−m kE
E e−B /θE

(Γ[kE ])m

×

(
m∏

i=1

[Ri − Ii ]

)k I −1

θ−m kI
I e−C /θ I

(Γ[kI ])m ,

where

A1 + A2 =
∑

(a ,b )∈P

(Eb − Ia ) +
∑

(a ,b )∈G \P

([{Eb ∧ Ra }− Ia ] ∨ 0)

equals the total “infectious pressure,” that is, the total time
spent by all infectious–susceptible pairs that share a contact,
B =

∑m

i=1 (Ii − Ei ) is the total time spent by all individuals
in the exposed state, and C =

∑m

i=1 (Ri − Ii ) is the total time
spent in the infectious state.
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Figure 1. The points show the posterior mean whereas the
lines show the 95% highest posterior density interval for each
parameter. The house distance and age difference parameters
correspond to continuous statistics measured in units of 100 m
and 4 years, respectively. All of these network parameters have
normal priors with means of 0 and standard deviations of
3. The primary model discussed in Section 3, model 4, ex-
cludes the house distance and age difference parameters (see
Section 3.2).

We use a Bayesian inferential approach, assigning indepen-
dent prior distributions to the parameters. For the epidemic
parameters governing the lengths of the exposed and infec-
tious periods (kE , θE , kI , θI ), we assign uniform priors with
hyperparameters governed by relevant known scientific infor-
mation regarding measles: We assign πkE

∼ Uniform(8, 20),
πθE

∼ Uniform(0.25, 1), πk I
∼ Uniform(15, 25), and πθ I

∼
Uniform(0.25, 0.75). For β, we assign a uniform prior on (0,
4), encompassing the range of biologically plausible values; see
Section 3.4 for further discussion. For the dyadic η parameters
governing the network, we assign independent normal prior
distributions with means of 0 and standard deviations of 3.
These priors are quite diffuse because the η parameters are on
the log-odds scale; experiments with more diffuse priors did
not noticeably alter the resulting posteriors.

Inference is then based on the joint posterior distribu-
tion of the model parameters. To produce an approximate
sample from this distribution, we use an MCMC algorithm
similar to that described in Groendyke et al. (2011). The
parameters β, kE , θE , kI , θI ,E, and P are updated exactly
as described in Groendyke et al. (2011) using random-walk
Metropolis-Hastings updates or Gibbs sampling; as per the
assumptions described earlier, for the Hagelloch measles
data, we assume that all values of I are fixed and known.
However, the more complicated ERGM network structure
used here necessitates different procedures for updating η
and G.

We update η using a Metropolis–Hastings step that pro-
poses a new value for η from a mutivariate normal distri-
bution centered at the current value of η. The off-diagonal
entries in the variance–covariance matrix of the proposal dis-
tribution are set to zero, whereas the diagonal entries are
tuning parameters. We then accept the proposal according to
the appropriate Hastings ratio.

Because the ERGM we use here is a dyadic-independence
model, we can update G by considering each dyad separately.
Thus, we cycle through each of the

(
N
2

)
dyads, drawing from

the appropriate full conditional distribution which, as a re-
sult of the ERGM network structure used here, will depend
on η and X. In Section 3, we describe a model selection proce-
dure based on reversible jump MCMC (RJMCMC) to deter-
mine for which values of s the X{i , j},s statistics should be kept
in the model given in equation (1) and which can be safely
left out.

We provide a software package named epinet for the R
language (R Development Core Team, 2009); this software
is publicly available on the Comprehensive R Archive Net-
work (cran.r-project.org). The epinet package includes the
Hagelloch data set studied in this article, along with routines
to perform the MCMC algorithm described here and various
simulation and plotting functions. Through simulations stud-
ies and tests not reported here, this software has been shown
to be able to successfully infer parameter values in many cases
and is useful for data sets larger than the Hagelloch data ana-
lyzed here; see Groendyke et al. (2011) for further discussion
of this software package.

We ran the algorithm for 50,000,000 iterations and thinned
every 500 iterations to reduce the autocorrelation between
samples and reduce memory requirements. The result is
100,000 samples containing at least 2,000 approximately in-
dependent samples (as measured by the integrated autocor-
relation time) for each model parameter.

3. Results
3.1 Network and Epidemic Parameter Estimates
Here, we examine the results of the analysis of the Hagelloch
measles data, highlighting the differences between our anal-
ysis and that of Groendyke et al. (2011), which used a simi-
lar inference approach, but employed a simpler Erdős-Rényi
network model. Figure 1 summarizes the posterior distribu-
tions of the parameters in the network model, η, via posterior
means and 95% highest posterior density intervals. Each of
these parameters can be interpreted as the incremental log-
odds associated with a change of one unit in the corresponding
covariate. We use the posterior distribution of these parame-
ters along with equation (1) to estimate the probability, pij ,
of a contact existing between any two individuals i and j. For
example, the model predicts that the posterior mean probabil-
ity pij of a contact between two individuals (X{i ,j },3 = −4.81),
both female (X{i ,j },5 = 1 and X{i ,j },6 = 0), both in Classroom
2 (X{i ,j },2 = 0 and X{i ,j },4 = 1), but not in the same household
(X{i ,j },1 = 0), whose ages differ by 1 year (X{i ,j },7 = 0.25) and
whose houses are 300 m apart (X{i ,j },8 = 3), satisfies

log
(

pij

1 − pij

)
= 7.36(0) + 5.14(0) − 4.81 + 2.10(1)

+ 1.44(1) + 0.91(0) − 0.45(0.25) + 0.24(3),
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Figure 2. Estimated posterior densities for epidemic parameters kI , θI , kE , and θE . Uniform prior distributions were used
for each of these parameters.

or p̂ij = 0.34. As only the marginal posteriors are presented
in Figure 1, the credible interval for any pij cannot be read
off directly, although it can be calculated from the MCMC
output.

There are a few notable features of these parameter esti-
mates. First, the household and classroom effects are over-
whelmingly strong; any two individuals who are in both
the same household but no other relationship have a mean
posterior estimate p̂ij = 0.93 (ignoring the house distance
and age difference terms), and that rises to p̂ij = 1.00 if
they are also both in Classroom 1. (Classroom 1 corre-
sponds to the classroom for younger children, whereas Class-
room 2 is the classroom for the older group of children.) This
is plausible considering the extremely contagious nature of
measles. There is also a noticeable gender homophily effect,
and furthermore, this effect appears to vary by gender, with
females showing a stronger tendency to contact each other
than males. There is also some evidence of an age effect; the
posterior distribution for this coefficient falls largely below
zero, indicating that increasing age differences result in de-
creasing odds of contact. The posterior distribution of the pa-
rameter related to spatial distance between houses is roughly
symmetric and centered close to zero, indicating that the ef-
fect of this parameter is likely negligible.

The estimated posterior distributions for the epidemic pa-
rameters kI , θI , kE , and θE are shown in Figure 2. Based on

these estimates, we find that the estimated mean length of
the exposure period (kE × θE ) falls in the range of 9–12 days
and the estimated mean length of the infectious period (kI ×
θI ) falls in the range of 7.5–8.5 days; these values are in con-
cordance with known scientific information regarding measles
(Gough, 1977).

3.2 Model Selection
The posterior distribution of the network parameters (see
Figure 1 for summaries of the marginal distributions of these
parameters) indicates that most of the parameters in the
model are very likely to be substantially different from zero,
and hence that the corresponding covariates have significant
effects on the network structure. There are a couple of param-
eters, however, that deserve further discussion. Recall that
the age difference parameter corresponds to a statistic mea-
suring the absolute value of the age difference between two
children. The marginal posterior distribution for this param-
eter is largely negative, suggesting that children who are closer
in age will tend to be more likely to be in contact than those
with larger age differences. Compared to many of the other
parameters, though, the effect of this parameter appears to
be rather weak. This is likely due to the inclusion of the two
classroom effects in the model. As each classroom consists of
children who are close in age, we might expect that much of
the effect of age similarity would be captured in the classroom
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effects. Indeed, when we leave the age difference parameter
out of the model, the estimates for both of the classroom pa-
rameters increase accordingly. Nonetheless, the fact that the
majority of the marginal posterior distribution for this pa-
rameter is negative indicates that there may be some effect
due to age difference beyond that which can be explained by
the classroom effects.

We see a similar relationship between the house distance
and household variables. The house distance parameter is esti-
mated to be very close to zero in the presence of the household
variable. However, when the household variable is excluded
from the model, the house distance parameter is estimated
to be substantially negative. Thus, house distance essentially
acts as a proxy for household when the household parameter
is excluded.

To help determine whether either or both of these param-
eters belong in our model, we use a RJMCMC algorithm to
perform model selection among four candidate models. Model
1 contains parameters corresponding to all of the aforemen-
tioned factors: edges, household, Classroom 1, Classroom 2,
house distance, male match, female match, and age difference.
Model 2 contains all of these factors except for the house dis-
tance effect, model 3 contains all factors in model 1 except
for age difference, and model 4 contains neither the house
distance nor the age-difference effect. Each of the four models
is assigned a prior probability of 1/4.

We implement the RJMCMC by augmenting our MCMC
algorithm to include a model-switching step in each sweep
through the parameters. We move among the four candidate
models by proposing model changes that add or remove one
parameter, with the specific proposals depending on the cur-
rent state of the model. In all model states, there are two
possible other models that we could move to and we pro-
pose moving to each of these two alternative models with
probability 0.5.

With the exception of the parameter being added or
dropped from the model, the proposed parameter values are
all set equal to the current parameter values. If we are propos-
ing switching from a model without the age-difference param-
eter to a model with this parameter, the proposed value of this
parameter is drawn from a N (0, σ2

A ) distribution. If we are
proposing switching from a model without the house distance
parameter to a model with this parameter, the proposed value
of this parameter is drawn from a N (0, σ2

H D ) distribution.
Each proposed switch from one model to another is evaluated
according to the general procedure outlined by Green (1995),
though we omit the technical details here.

The Markov chain produced by this RJMCMC algorithm
spent the majority (approximately 70%) of its time in model
4. There was also considerable evidence (about 26% posterior
probability) for model 3. Models 1 and 2 each received very
little (less than 3%) support. Based on these results and the
discussion earlier, we proceed with our analysis using model
4, which we believe to be the best and most parsimonious of
the candidate models.

Because RJMCMC model selection procedures can be in-
fluenced by the prior distributions of the parameters being in-
vestigated (Richardson and Green, 1997), we performed tests
of the sensitivity of our model selection algorithm to the prior
variances of the two parameters in question. We found that

the procedure is relatively insensitive to the choice of priors,
and that under a wide range of prior variances, model 4 is
clearly favored.

3.3 Degree Distribution
We can also use the posterior distributions of the network
parameters to construct estimates of the degree distribution
(where “degree” refers to the number of contacts for an in-
dividual in a network) for this population. To do this, we
sampled from the joint posterior distribution of the η param-
eters and used these sample values to construct simulated
contact networks. The corresponding degree distributions of
these networks are shown in Figure 3. We can clearly see a
distinct difference in the pattern of the degree distribution
generated by the Erdős-Rényi model, as opposed to model 4.
Specifically, the Erdős-Rényi model produces a roughly sym-
metric distribution of degrees, whereas model 4 produces a
degree distribution that is noticeably right-skewed. This right-
skewed shape more closely resembles the shape of most typical
social networks (Wasserman and Faust, 1994), indicating that
the more general network model is likely to be a more realistic
description of population interactions.

3.4 Distinguishing Between Contact and Transmission
One of the notable difficulties in using epidemic data to per-
form inference for the parameters in this model lies in sepa-
rating the effects of the epidemic parameters from those of the
network parameters. This problem was discussed in Britton
and O’Neill (2002) and explored in Groendyke et al. (2011).
One method of assessing the severity of this problem is to ex-
amine the correlations in the joint posterior distribution; as in
Groendyke et al. (2011), we consider the correlation between
log (pij ) and log (β). For the Erdős-Rényi model, in which, for
all i, j, pij = p, the correlation between log (pij ) and log (β)
is approximately −0.79, whereas for model 4, the posterior
correlations between log (pij ) and log (β) vary by dyad, but
all fall between −0.31 and 0.05. In addition, Web Figure 2
shows the estimated posterior density for the parameter β for
both the Erdős-Rényi model and model 4; clearly, the latter
model yields a stronger signal for β, whereas in the Erdős-
Rényi model, the posterior distribution of β is substantially
influenced by the shape of its prior. Groendyke et al. (2011)
similarly found that when using an Erdős-Rényi model to an-
alyze this data, the posterior distribution of β was heavily
influenced by its prior (a gamma distribution).

3.5 Transmission Tree
In some cases, the transmission tree itself—the sub-network
containing information about who infected whom—may be of
interest. Within the MCMC sampling procedure, the trans-
mission tree is treated like any other unknown parameter and
is sampled at each iteration of the algorithm. One such sample
is shown in Figure 4. It is drawn in a style to display both tem-
poral information (when individuals became exposed, infec-
tious, etc.) and topological information (who infected whom).
Inspection of the tree can be highly informative about the
behavior of the epidemic. Here, for example, we see that in-
dividuals typically infected others as soon as they become
infectious, suggesting that the virus is highly infectious and
spread is limited by rapid exhaustion of susceptible contacts.
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Figure 3. Degree distributions for contact networks simulated from the posterior distribution of the network model parameters
for (a) model 4 and (b) the Erdős-Rényi model.

We caution, however, that this specific tree is just a sin-
gle sample from the MCMC run and is not representative of
the posterior distribution of transmission trees so must not
be over interpreted. An example of the great variability in
the topology of sampled trees is seen by looking at the case of
Host 176, labeled in Figure 4. The tree shows this host causing
16 secondary infections, more than any other in the outbreak.
Yet, the posterior distribution of secondary infections caused
by Host 176, shown in Web Figure 3, indicates that there is
little signal in the data for how many infections were caused
by this host, with estimates ranging from 4 to 34. Oesterle
(1992), who empirically assigned secondary infections to indi-
vidual hosts, assigned none to Host 176. This is unsurprising
given the data and the fitted model where, provided an edge
is present in the contact network, the virus is equally likely
to be transmitted over any edge from an infectious node to a
susceptible one.

3.6 Reproduction Number
In the study of epidemics, one of the quantities that is com-
monly of interest is the basic reproductive number, R0, de-
fined as the mean number of secondary infections caused by
a single infectious individual in a fully susceptible population
(Keeling and Rohani, 2008; Anderson and May, 1991). Here,
we are working with a mixed population of immune adults
and susceptible children so consider the effective reproduc-
tion number, R, which is the actual number of secondary cases
per primary case (Wallinga and Teunis, 2004) and provides a
lower bound for R0. R is largest at the beginning of the epi-
demic when depletion of susceptible individuals has had little
impact. We use techniques for finding a mean estimate of R at
the beginning of the epidemic by using methods for estimat-
ing R0 in situations where a stochastic epidemic is assumed to
spread over edges of a contact network that includes only sus-
ceptible individuals. Britton and O’Neill (2002) gives such a
formula for a type of SIR epidemic and Erdős-Rényi network
model; Groendyke et al. (2011) slightly modify this formula
for use with an SEIR epidemic model. Although these for-
mulas consider the mean degree of the contact network, they

fail to take into account the shape of the degree distribution.
Meyers (2007) describes an approach for calculating R0 which
depends on the first two moments of the degree distribution;
Kenah (2011) discusses a similar formulation, originally pro-
posed by Andersson (1998), incorporating the distribution of
the length of time spent by individuals in the infectious state
to produce a formula for R0. Using this general framework,
we can find an expression for the mean of R at the beginning
of the outbreak corresponding to the network and epidemic
models used here:

R =
(

E [D2]
E[D]

− 1
)

·

(
1 −
[

1
1 + βθI

]k I
)

, (2)

where D is the random variable describing the degree distribu-
tion for the individuals in the population. Using equation (2)
in conjunction with the joint posterior samples generated us-
ing our MCMC algorithm, we can approximate the posterior
distribution of R. Doing so yields 95% posterior credible inter-
vals of (6.2, 9.8) for the Erdős-Rényi model and (11.9, 18.9)
for model 4. Thus, model 4 yields a substantially higher esti-
mate of R, though both estimates seem reasonable (Anderson
and May, 1991, gives estimates of R0 for measles ranging be-
tween 5 and 18 for various outbreaks). For both models, the
posterior distribution of R was roughly bell shaped and sym-
metric.

It is also interesting to further consider the posterior distri-
bution of β in terms of its relationship with R, as per Equa-
tion (2). Seeing θI ≈ 0.4 and kI ≈ 20, the term involving β
disappears quickly as β increases and is small for values of β
greater than about 0.5. The posterior density for β (see Web
Figure 2) has a large peak at approximately β = 0.5, but it
is nearly flat for the values of β greater than 2. This implies
that though the data indicate a strong signal for β, they are
also unable to distinguish among the larger values of β. We
might then expect epidemics with transmission rates of, say,
β = 2 and β = 4 to look very similar, and simulation indicates
that this is indeed the case.
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Figure 4. An example of a sampled transmission tree. The infection was introduced to the population at time zero. The
horizontal lines represent exposed or infected hosts with a tick mark demarcating the transition from exposed to infectious
(infectious hosts shown red in electronic version). The vertical lines show who infected whom. Thus, the branching points of
the tree are infection events whereas the leaves of the tree are removal/recovery points. Host 176, labeled here at the leaf
associated with its recovery time, is highlighted here as it is discussed in the text. This figure appears in color in the electronic
version of this article.

3.7 Assessing Model Fit
We would also like to assess the quality of the network and
epidemic models that we have employed here to describe the
Hagelloch measles epidemic. To this end, we consider simu-
lating 1000 contact networks from our network models and
corresponding posterior parameter samples, and then simu-
lating epidemics over these networks, again using epidemic
parameter values sampled from the joint posterior distribu-
tions produced by our MCMC algorithm. We, then, assess the
model fit by comparing the simulated epidemics with the ac-
tual original data. In particular, we compare the number of
individuals in the infectious state over time as the epidemic
progresses through the population. Figure 5 shows the actual
data as compared to the simulated epidemics for model 4
as well as the Erdős-Rényi model. Overall, the simulated epi-
demics produced by model 4 appear to more closely match the
original Hagelloch measles data than do those produced using

the simpler Erdős-Rényi model. The epidemics produced by
the Erdős-Rényi model spread through the population more
slowly than did the actual outbreak. This is particularly no-
ticeable at days 30–40 (where the simulated number of infec-
tious individuals is fewer than those in the actual outbreak)
as well as at days 50–60 (where the simulated number of in-
fectious individuals is greater than those in the actual out-
break). In contrast, the more general ERGM matches the ac-
tual outbreak pattern much more closely, with the number
of individuals in the infectious state rapidly increasing and
then decreasing at roughly the same time points as in the ac-
tual outbreak. We believe that the main factor contributing
to the ability to better match the actual outbreak pattern is
the more complicated structure of the full network model—
and the corresponding degree distribution pattern it produces.
With the exception of β, the estimates of the epidemic model
parameters were very similar between the two models; hence,
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Figure 5. Number of individuals in the infectious state over time for the (a) ERGM model 4 and (b) Erdős-Rényi model.
In each case, the actual Hagelloch measles outbreak data are given by the bold line (red in the electronic version), whereas
simulated data are shown in multiple thin lines, with boxplots summaries shown at each 5-day time increment. This figure
appears in color in the electronic version of this article.
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Figure 6. Summaries of simulated epidemic outbreaks in the absence (darker bars) and presence (lighter bars) of the school
closing containment strategy. One thousand simulations were run for both cases. The left panel shows the distribution of
outbreak sizes, that is, number of individuals who were ultimately infected during the course of the epidemic. The right panel
shows the distribution of the time (measured in days since the beginning of the outbreak) that the infectious group reaches
its maximal size.

we believe that the difference in network structure is the pri-
mary contributor to the improved model fit. We hasten to
point out, though, that there are clearly aspects of this epi-
demic that even our improved model fails to adequately cap-
ture. For instance, the bulk of the simulated epidemics peak
(in terms of number of infectious individuals) slightly (per-
haps 3 days) before the peak of the actual outbreak. Also,
the maximum number of infectious individuals in the actual
outbreak is somewhat greater than that produced by the sim-
ulated epidemics.

It is also interesting to consider simulating the impact of
containment strategies on the severity and rapidity of the epi-
demic. In particular, we consider the idea of shutting down
the schools to try to contain the spread of the disease. This
approach is perhaps overly simplistic, as the contact patterns
of children outside of school would be modified, and proba-
bly increased, after a school closure (see, for example, Eames,
Tilston, and Edmunds, 2011), yet we include it to demon-

strate the ease with which control strategies can be modeled
and tested within the framework we present here. As above,
we simulate epidemics using parameter values sampled from
the posterior distribution, but we set the η parameters cor-
responding to Classroom 1 and Classroom 2, both equal to
zero. Examining the resulting simulated outbreaks, a couple
of observations can be made. First, this containment strat-
egy does little to diminish the ultimate size of the outbreak.
The left panel of Figure 6 shows a histogram of the number
of individuals infected in the simulated outbreaks. Although
the outbreaks simulated under the containment strategy do
indeed tend to be smaller, the difference is very small. (In
fact, in both the presence and absence of the containment
strategy, the epidemic affects almost all of the 187 suscepti-
ble individuals in virtually all of the simulations.) The right
panel of Figure 6 gives a histogram showing the day on which
the infectious group reaches its maximum size; we use this as
a measure of the speed of the outbreak. We can see that the
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epidemic does spread considerably less rapidly in the presence
of the containment strategy. These histograms indicate that
this containment strategy, whereas only minimally effective in
diminishing the ultimate size of the epidemic, is indeed able to
significantly slow down the progression of the disease through
the population.

4. Discussion
Although the problem of inferring the structure of a contact
network using only epidemic data is a challenging one, our
results suggest that it is indeed possible to utilize this type of
data to make meaningful statements regarding which charac-
teristics have significant influences on the propensity of indi-
viduals to make infectious contacts with one another.

In this article, we have extended previous works of Britton
and O’Neill (2002), Ray and Marzouk (2008), and Groendyke
et al. (2011) by considering a more general ERGM to de-
scribe the contact network in a population. This more flexi-
ble framework makes it possible to incorporate any number of
nodal and dyadic covariates, any of which may be categorical
or quantitative in nature. We have shown that we can not
only distinguish the (biological) effects of the epidemic from
the (sociological) effects of the population interactions, but
we can also make meaningful statements regarding the con-
tact structure of the population in question and which factors
have substantial impacts on this structure. We demonstrated
our procedure by analyzing a very rich data set describing a
measles outbreak in the town of Hagelloch, Germany in 1861.
The results of this analysis also suggest that this approach has
the potential to provide more thorough information regarding
population structure than has previously been considered.

We find that the results of our analysis of the Hagelloch
measles data are broadly consistent with those of Neal and
Roberts (2004) and Britton et al. (2011). Direct comparisons
between these models is difficult, because the model struc-
tures used in the various analyses are quite different: Neal
and Roberts (2004) used the covariates to model the trans-
mission rate, Britton et al. (2011) used the household and
classroom structures to define the levels in their three-level
mixing model, and the present analysis uses the covariate in-
formation to model the network structure. We can nonetheless
at least make some qualitative comparisons among the three
sets of results.

Our analysis suggests that the household and classroom ef-
fects are the most substantial factors governing the network
structure. Neal and Roberts (2004) and Britton et al. (2011)
similarly found that these were likely significant factors in the
spread of this disease; all three analyses find that the Class-
room 1 effect was more substantial than the corresponding
Classroom 2 effect. Our analysis found that the gender ho-
mophily factors also appear to affect the propensity of edge
formation, whereas the evidence for the effect of age difference
was much weaker; the other two analyses of these data did not
include these factors in their model. Neal and Roberts (2004)
finds a significant spatial effect in the transmission rate for
this outbreak; they use three different forms for the spatial
effect in their model and note that their results are robust to
the choice of spatial model form. In the present analysis, other
than the increase in infectious contact due to intrahousehold

relationships, which we found to be the strongest effect, there
does not appear to be much of a spatial effect in the data.
Britton et al. (2011) did not include a spatial effect in their
model. The choice of which model a researcher fits to data is
largely down to what question the researcher wishes to an-
swer. We believe there are many cases where it is of interest
to separate the contact process from the transmission process
as we have done here.

Although the network model considered here is much more
general than those previously utilized for this type of infer-
ence, it could nonetheless be extended in several ways. Much
social networks literature recommends using a dyadic depen-
dence model rather than the independence model we use here
to capture effects, such as clustering; however, we believe that
the large number of covariates our independence model takes
into account likely already captures clustering due to match-
ing on these attributes, though in the absence of such co-
variate information it may be necessary to model clustering
explicitly using a dyadic dependence model. It may also be
useful in some cases to consider a more sophisticated model
for the transmission rate than the simple model used here,
which assumes that the transmission rate is constant, across
both time and individuals. One might consider a rate that is
a function of the length of time that an individual has been
infected, because for many diseases, the level of infectiousness
is known to vary throughout the infectious period. Further,
we assumed that the infectious period began one day before
the onset of prodromes and finished 3 days after the onset of
rash. In work not reported here, we reanalyzed the data with
a longer infectious period, finishing 5 days after the appear-
ance of rash, as in Lawson and Leimich (2000). This change
does not greatly affect parameter estimates (except for kI and
θI ) but it changes the shape of the observed epidemic curves
of the type shown in Figure 5, suggesting that this lag period
could be estimated directly from the data.

We might also consider applying this type of inferential
approach to data sets that are larger and more diverse than
those that have been previously studied. Although previous
studies that have statistically inferred network model param-
eters using epidemic outbreak data have mostly considered
smaller and complete data sets (Britton and O’Neill, 2002;
Ray and Marzouk, 2008), this approach is indeed viable for
larger epidemics; our software easily allows for analysis of data
sets containing up to 1000 infected individuals.

Most data sets in epidemiology are very incomplete, con-
taining only a small fraction of the total infected population
and having an unknown number of susceptible individuals
to start with. In theory, missing data can be dealt with us-
ing our method by simply imputing the missing infections
and times. In practice, large numbers of missing infections
would drastically slow down the mixing of the MCMC algo-
rithm and render the method unusable. Although we aim to
extend the software to deal with small numbers of missing
infections soon, working with larger numbers will require a
more nuanced approach. Our approach does allow the possi-
bility of incorporating different types of data into the analysis.
Groendyke et al. (2011) and Welch et al. (2011) discuss poten-
tial methods for and benefits from including additional forms
of data.
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5. Supplementary Materials
Web Figures referenced in Sections 1.1, 3.4, 3.5, and 3.6 are
available with this article at the Biometrics website on Wiley
Online Library.
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besonderer Berücksichtigung der statistischen Verhältnisse. M.D.
Thesis, Eberhard-Karls Universität, Tübingen.
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